CT AEC Techniques in PET/CT scanning

G Iball¹, D Tout², H Williams²

CT in PET

- CT introduced into PET ~2000
- CT used for:
 - attenuation correction
 - attenuation correction & localisation
 - radiotherapy planning
 - diagnosis
- Range of image quality and dose

Lack of current dose data

- Some protocol information from UK PET SIG survey 2005 – old scanners
- French survey 2011¹
 - Eyes-thighs scans
 - Attenuation correction & localisation

	Average	National DRL
CTDIvol (mGy)	6.6	8.0
DLP (mGycm)	628	750

^{1.} Cecile Etard et al, National survey of patient doses from whole body FDG PET-CT examinations in France in 2011, Radiation Protection Dosimetry, 2012

Collaborative project

- Two PET/CT scanners in Leeds
 - GE Discovery 690
 - Run by Leeds Trust
 - Philips Gemini TF
 - Run by Alliance Medical
- One PET/CT scanner in Central Manchester Trust
 - Siemens Biograph mCT
- All are current 64 slice models

GE scan protocols

	GE default	Clinical
kV	120	120
Detector coverage (mm)	40	40
AEC settings	NI = 25	NI = 35
	30-210 mA	30-450 mA
	Auto & SmartmA	Auto & SmartmA
Pitch	1.375	1.375
Rot time (s)	0.5	0.5
Primary image width (mm)	3.75	3.75

Philips scan protocols

	Recommended
kV	140
Detector coverage (mm)	40
AEC settings	Fixed 50mAs/slice with D-DOM
Pitch	0.829
Rot time (s)	0.5
Primary image width (mm)	4

- "Don't use Z-DOM if scanning whole body"
 - May modulate too low in places
- "D-DOM poor in pelvis"

Changes needed

- Clinicians wanted more contrast in images
- Very bad images for large patients
- Developed weight based protocols¹

1. Livingstone, Pradip, Dinakran, Srikanth "Radiation doses during chest examinations using dose modulation techniques in multislice CT scanner", Indian J Radiol Imaging. 2010 May; 20(2): 154–157

144kg, 1.55m, BMI=59.9, arms down – 120kV, 90mAs/slice, DDOM on

Weight based protocols

Weight (kg)	kV	mAs/slice	D-DOM
40-60	120	72	On*
61-80	120	80	On*
81-110	120	90	On*
110+	140	80	Off
110+ arms down	140	120	Off

^{*} Off for "round" and arms down patients. "DDOM scaling of abdominal mAs will be inappropriate with non-standard body shapes."

Siemens protocols

	Siemens default/clinical	
kV	120	
Beam collimation (mm)	16*1.2	
AEC settings	Q.Ref mAs = 30	
	CARE Dose 4D	
	Average/Average	
Pitch	1.5	
Rot time (s)	0.5	
Primary image width (mm)	4	

Dose & image quality methods

- For "eyes to thighs" scans only
- Record:
 - CTDIvol & DLP from dose report
 - Patient weight

At mid point of liver measure:

- AP & lateral dimensions
- Liver noise

Katie Howard et al – CTUG 2008

3rd UK CT dose survey

Sample statistics

	GE	Philips	Siemens
Sample size	73	103	71
Weight (kg)	76 (52-121)	69 (37-107)	75 (39-116)
Age	60 (20-82)	65 (16-89)	64 (15-86)
Gender	M: 38	M: 49	M: 42
	F: 35	F: 54	F: 29

Size or weight?

Dose vs. patient size

Dose vs. weight

Relative dose vs. weight

Image noise vs. weight

Dose and IQ comparisons

Mean DLP (mGycm)	GE	Philips	Siemens*	French data
60-80 kg	261	370	186	-
50-100 kg	293	379	197	628
Mean liver noise	22.4	15.2	42.1	

- Comparable data much lower than French data
- Philips doses much higher than GE
- Image quality very different

^{*}Siemens is attenuation correction only, hence lower doses

Patient data summary

- Dose variation on Philips mainly due to weight based protocols
 - D-DOM makes no adjustment for weight/size
- GE adjusts dose much more rapidly with weight than Siemens system
 - Both performed as expected
- Very good correlation between DLP and weight

Patient data summary

- Potential for optimisation especially for two scanners on same site
- Need to know how tube current varies along patient/phantom
- What could be changed to optimise the protocols?

Rando phantom methods

- Scan on clinical protocols
 - Record CTDIvol and DLP
 - Extract mA values from DICOM headers
 - Adjust AEC settings and repeat

Initial Siemens results

Not present on patients

Siemens 'spike' in pelvis

Removing washers and nut at end of phantom removes spike

Siemens options

CARE Dose 4D is x-y and z modulation

Vary adaptation strength settings

weak/strong 24% higher DLP than average/average; strong/weak 9% lower

GE options

x-y and z modulation used clinically Test z axis only

14% reduction in DLP with SmartmA included

Philips options

D-DOM set to 72mAs/slice

Set reference image at fixed 72mAs/slice

After repeat surview ACS suggested 72mAs/slice, then activate Z-DOM

Z-axis modulation only

Overall shape very similar!

Philips values higher due to high mAs/slice setting on reference images

Overall shape is most important thing

Current clinical protocols

"Best" modulation techniques?

Large & small patients?

Dose variation with lateral size

Relative dose vs. weight?

Rando phantom summary

- Can adjust AEC settings to achieve similar modulation patterns
- Philips: Z-DOM and ACS much better than D-DOM
- Dose change with size via table height adjustment

Conclusions

- All AEC systems can modulate adequately
- Some are easier to set than others...
 - Know your system!
 - Cannot achieve equal dose for all patient sizes on all scanners with a single scan protocol
- Must make sure patient is set up centrally
- Hybrid imaging reference doses are needed

Our thanks to...

- PET/CT staff in:
 - Central Manchester University Hospitals
 - Leeds Teaching Hospitals
 - Alliance Medical Ltd
- Tim Wood for advice on the Philips system

Patients with prosthetic hips

Patient 3

No mA spike present in region of implant

Patients with pacemakers

Philips dose saving vs. lateral/AP ratio

